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Figure 1. We present MM-Narrator, a training-free framework towards automatic audio description (AD) generation for long-form videos
via iterations: for each scene, it perceives multimodal inputs (i.e., seeing visual frames and hearing character dialogues), recalls the
context AD depicting past scenes, and infers AD prediction for the current scene. Zoom in for details.

Abstract

We present MM-Narrator, a novel system leveraging
GPT-4 with multimodal in-context learning for the gener-
ation of audio descriptions (AD). Unlike previous methods
that primarily focused on downstream fine-tuning with short
video clips, MM-Narrator excels in generating precise au-
dio descriptions for videos of extensive lengths, even be-
yond hours, in an autoregressive manner. This capability
is made possible by the proposed memory-augmented gen-
eration process, which effectively utilizes both the short-
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term textual context and long-term visual memory through
an efficient register-and-recall mechanism. These contex-
tual memories compile pertinent past information, includ-
ing storylines and character identities, ensuring an accu-
rate tracking and depicting of story-coherent and character-
centric audio descriptions. Maintaining the training-free
design of MM-Narrator, we further propose a complexity-
based demonstration selection strategy to largely enhance
its multi-step reasoning capability via few-shot multimodal
in-context learning (MM-ICL). Experimental results on
MAD-eval dataset demonstrate that MM-Narrator consis-
tently outperforms both the existing fine-tuning-based ap-
proaches and LLM-based approaches in most scenarios,
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as measured by standard evaluation metrics. Additionally,
we introduce the first segment-based evaluator for recur-
rent text generation. Empowered by GPT-4, this evaluator
comprehensively reasons and marks AD generation perfor-
mance in various extendable dimensions.

1. Introduction
Audio Description (AD) is an essential task that trans-

forms visual content into spoken narratives [1], primarily
assisting visual impairments in accessing video content.
Given its evident importance, the notable expectations for
AD to fulfill include complementing the existing audio dia-
logue, enhancing viewer understanding, and avoiding over-
lap with the original audio. This process involves identify-
ing not just who is present in the scene and what actions are
taking place, but also precisely how and when the actions
occur. Additionally, AD should capture subtle nuances and
visual cues across different scenes, adding layers of com-
plexity to its generation.

In addition to aiding visually impaired audiences, AD
also enhances media comprehension for autistic individuals,
supports eyes-free activities, facilitates child language de-
velopment, and mitigates inattentional blindness for sighted
users [25, 47]. However, traditional human-annotated AD,
while detailed, incurs significant costs and often suffers
from inconsistencies due to low inter-annotator agree-
ment [21], highlighting the need for automatic AD gen-
eration systems. Furthermore, AD serves as an emerging
testbed for benchmarking the capabilities of LLM/LMM
systems in long-form multimodal reasoning [21,22,30], to-
wards next-level advanced video understanding.

In this paper, we present MM-Narrator, a multimodal
AD narrator, to effectively leverage multimodal clues, in-
cluding visual, textual, and auditory elements, to enable
comprehensive perception and reasoning. In particular,
MM-Narrator distinguishes itself by naturally identifying
characters through their dialogues, in contrast to existing
methods that may underutilize subtitles [21, 22].

Apart from an intricate multimodal understanding of the
video content, generating story-coherent AD for long-form
videos also relies on an accurate tracking and depicting
of character-centric evolving storylines over extended du-
rations, even spanning hours. This differs AD generation
from conventional dense video captioning [24, 28, 61, 65]:
Unlike mere frame-by-frame scene description, AD should
weave a coherent narrative, utilizing characters as pivotal
elements to maintain an uninterrupted storytelling flow [1].
To achieve contextual understanding, we propose to lever-
age both short-term and long-term memories to assist MM-
Narrator in its recurrent AD generation process. Specifi-
cally, short-term textual memory sets the stage for generat-
ing coherent narrations, whereas long-term visual memory

aids in character re-identification during long-form videos,
especially for scenes lacking dialogue.

As a GPT-4 empowered multimodal agent, MM-Narrator
could further benefit from multimodal in-context learning
(MM-ICL) via our proposed complexity-based multimodal
demonstration selection. With complexity defined with
the chain-of-thought (CoT) technique [63], MM-Narrator
could efficiently form and learn from a smaller candidate
pool of multimodal demonstrations, effectively improving
its multimodal reasoning capability in a few-shot approach.
This proposed complexity-based selection surpasses both
random sampling and similarity-based retrieval, which are
classic ICL solutions in choosing few-shot examples.

In summary, our contributions are four-folds: (1) We
present MM-Narrator, an automatic AD narrator for long-
form videos that can perceive multimodal inputs, recall past
memories, and prompt GPT-4 to produce story-coherent
and character-centric AD. (2) We propose a complexity-
based multimodal in-context learning (MM-ICL) to further
boost its AD generation performance with few-shot exam-
ples, offering new insights into the question “what makes
good ICL examples?” under complex text generation sce-
narios with multimodal reasoning needed. (3) Our training-
free MM-Narrator outperforms both fine-tuning-based SO-
TAs and LLM/LMM baselines, including GPT-4V, in most
classic captioning metrics. (4) Furthermore, we introduce
the first GPT-4 based evaluator for recurrent text genera-
tion, measuring more comprehensive AD generation qual-
ities at both text-level and sequence-level. Results suggest
that MM-Narrator generates AD comparable to human an-
notations across several considered aspects.

2. Related Work
Audio Description (AD) offers verbal narration of key
visual elements in videos [1], enriching the viewing ex-
perience for individuals who are blind or have low vision.
AD differs from video captioning [7, 24, 28, 31, 61, 65],
which solely describes the visual content of a given video
clip. Instead, AD generation considers multiple modalities,
aiming to generate coherent narratives of storylines, char-
acters, and actions in a way that complements the regular
audio track. Initial studies [50, 51, 53, 57] concentrated on
developing audio segmentation and transcription system
to collect high-quality video datasets with temporally
aligned ADs. These foundational efforts pave the way
for more advanced explorations in LSMDC [51]. Recent
research [22] has ventured into training transformer models
equipped with a frozen LLM. Researchers also incorporate
an external character bank [21] to enhance the accuracy
of AD generation. Different from prior works [21, 22]
that rely on downstream fine-tuning, our proposed MM-
Narrator generates accurate ADs in a training-free manner.



Figure 2. MM-Narrator generates AD sequence for long-form videos via iterations.

LLM for Video Understanding. The remarkable success
of Large Language Models (LLMs) [8,14,15,17,44,58] has
sparked increasing interest in their application to video un-
derstanding. Recent works [6, 12, 27, 30, 37, 54] generally
fall into two main categories: (i) visual instruction tuning,
and (ii) prompting LLMs. The first approach [27,32,37,38]
typically fine-tunes an LLM-based model. This involves in-
tegrating the pre-trained LLMs and additional trainable net-
works. The second category [4] involves prompting LLMs
to invoke specialized expert tools, transforming the input
video into a textual document, which then serves as input
to the LLMs for reasoning [6, 12, 30]. However, this strat-
egy may not be effective for processing lengthy or speech-
dense videos, as the LLMs often face challenges with ex-
cessive token lengths. Different from prior work, we pro-
pose to leverage short-term textual memory and long-term
visual memory with a register-and-recall mechanism, to ef-
fectively generate ADs for long-form videos.
In-Context Learning (ICL) [13, 34, 36, 39, 40], as a new
paradigm, allows LLMs to learn from a few examples with-
out needing parameter updates via downstream fine-tuning.
This learning-from-analogy strategy [16] augments original
query question with a context formed by natural language
demonstrations. Existing studies highlight that the success
of ICL largely depends on the selection of effective demon-
strations. One common solution [33, 52] is to form the
ICL prompt with closest neighbors, which are retrieved with
highest similarity to the query embedding. Other query-
based metrics are also explored in finding supportive ICL
examples on the basis of query content, such as mutual
information [55, 56] and perplexity [20]. Although prior
works have demonstrated their superiority in text classifi-
cation tasks or open-domain QA [16], they have not ex-
plored ICL on complex text generation tasks under multi-
modal scenarios. In this work, we propose to quantify the
demonstration complexity as the number of reasoning steps
in chain-of-thoughts (CoTs) [63, 68], and select the most

intuitive examples to improve AD generation with few-shot
MM-ICL.

3. Method
Given a long-form video V , consisting of multiple video

clips {vt}, MM-Narrator generates an AD sequence {Tt}
in an autoregressive manner, as shown in Figure 2. We
first present MM-Narrator, a multimodal narrator that con-
ducts recurrent AD generation via prompting GPT-4 (§3.1).
Building upon MM-Narrator, we propose the complexity-
based MM-ICL to further enhance its multimodal reason-
ing capabilities through intuitive few-shot demonstrations
(§3.2). Notably, the entire MM-Narrator framework oper-
ates in a training-free manner.

3.1. Recurrent AD Narrator

At each iteration of scanning through a specific long-
form video, MM-Narrator utilizes multimodal experts for
perception, recalls past memories in both short-term and
long-term contexts, and prompts LLM to generate an audio
description. We describe each step as below.
Multimodal perceptions. We employ specialized vision
and audio expert models to extract multimodal informa-
tion from the input video clip. These off-the-shelf mul-
timodal models are employed as integral tools within our
MM-Narrator framework. We denote a video clip consist-
ing of N frames with timestamp t as vt = {I1, I2, ..., IN}.
We deploy vision experts [48, 60, 64] to gather visual per-
ceptions, which involves obtaining per-frame visual fea-
tures and text-formed outputs. Specifically, for each frame
Ii, we collect CLIP-ViT features x

CLIP
i , image captions

x
cap
i , and people detections x

det
i . Alongside these crucial

visuals, we observe the spoken dialogues play a profound
role, which is underutilized in existing approaches [21, 22].
The spoken dialogues not only offer information comple-
mentary to the visuals, but also primarily serve as the



only access to identify characters with their names when
no external video metadata is given. To be specific, we
concatenate the subtitles within a certain time window
Tsub as x

sub
t∈Tsub

. These subtitles can be sourced from
the Internet or generated through automated speech recog-
nition (ASR) as an audio expert [10]. To summarize,
for a given video clip vt, the multimodal experts pro-
duce a comprehensive tuple of perception clues Xt =

({xCLIP
i }, {xcap

i }, {xdet
i },xsub

t∈Tsub
), where {x⋅

i} denotes
the per-frame outputs. Among these, {xcap

i } and x
sub
t∈Tsub

are directly used in constructing LLM prompts, while the
others facilitate the proposed register-and-recall mechanism
for long-term character re-identification.

Short-term memory queue. To equip MM-Narrator
with contextual understanding for coherent AD genera-
tion, we maintain a short-term memory queue Mshort =

{Tt−K , ..., Tt−1} to contain the K most recently predicted
ADs with timestamps. The short-term memory queue will
be updated over time during inference. This lightweight
textual queue is instrumental in creating story-coherent AD
narrations, enabling visually impaired audiences to follow
the storytelling more intuitively.

Long-term visual memory. To endow MM-Narrator with
the ability to recall characters identified in previous video
clips, we construct a frame-level character re-identification
visual bank. This visual bank, designed for long-term
use, is operated by a register-and-recall mechanism as fol-
lows: (1) we register x

CLIP
j as the visual signature for

each globally-indexed frame Ij in all previous video clips
Ij ∈ {v1, v2, ..., vt−1}, and (2) for each current frame Ii,
we first filter-out the invalid matches resulting in nonposi-
tive cosine similarity Simcos(xCLIP

i ,x
CLIP
j ), and then re-

trieve the past predicted AD which owns the highest simi-
larity to the current visual signature xCLIP

i . For simplicity,
this mechanism is activated only when a single individual is
detected in a frame (i.e., ∣xdet

⋅ ∣ = 1), typically in close-up
shots of the character, making frame-level CLIP-ViT fea-
tures [48] compatible for character re-identification. Given
any AD that covers multiple frames, this frame-level visual
retriever supports the MM-Narrator in re-identifying mul-
tiple characters appearing in the video clip. Additionally,
the retrieval candidate pool is refined to include only past
predicted ADs where person named entities are recognized
through a Named Entity Recognition (NER) tool [18]. This
strategy focuses MM-Narrator on the main characters who
contribute to the past storyline.

Prompting LLM for AD generation. Gathering all
aforementioned text-formed outputs, MM-Narrator builds
prompts to query GPT-4 for recurrent AD generation.
Specifically, the input prompt contains the following el-
ements: task introduction, visual captions (xcap

i ) with
successfully re-identified characters, recent context ADs

(Mshort) and character dialogues (xsub
t∈Tsub

). Noticeably,
we also found that adding task-specific hints into the prompt
could empirically benefit overall AD generation, which we
attribute as an explicit attention guidance via prompt engi-
neering. A breakdown of our AD generation prompt con-
structed by MM-Narrator, is provided in the supplementary
(Figure 7).

3.2. Multimodal In-Context Learning

In this section, we further extend MM-Narrator with
multimodal in-context learning (MM-ICL) on few-shot ex-
amples. Our exploration begins by examining two primary
methods of demonstration selection: random and similarity-
based approaches. We then critically evaluate the question,
“What makes for effective ICL examples?” and propose a
complexity-based MM-ICL approach to improve the mul-
timodal reasoning capability with the most intuitive multi-
modal demonstrations.
Random MM-ICL. Firstly, we build an in-context learning
(ICL) demonstration pool, denoted as P , from the training
dataset. Each demonstration within the pool is composed of
a pair (Q,A), where Q represents the text-formed question
created using multimodal experts, and A is the correspond-
ing ground-truth AD, serving as the answer. Then, for each
test query q, we randomly sample C demonstrations from
P to facilitate the ICL process.

Furthermore, we are further interested in two essential
questions: “What makes good examples for AD genera-
tion?” and “How to find and use them for ICL?”
Similarity-based MM-ICL. A common approach, as sug-
gested in existing literature [33], is to identify “good ex-
amples” based on similarity, employing a k-NN algorithm
to select examples that exhibit the highest k similarity be-
tween the embeddings of Qi and the test query q. This solu-
tion expects to find supportive examples to benefit few-shot
performance via a “soft-copy” mechanism [23, 43], which
is often used in text classification tasks, such as sentiment
analysis, or relatively-simple text generation task such as
open-domain QA [16].

However, we empirically find that this similarity-based
approach does not manage to enhance the ICL capability
for AD generation, regardless of whether the retrieved ex-
amples are presented in descending order [33] or ascending
order [16]. We hypothesize that for complex text generation
tasks such as AD generation, which requires multimodal
perception and reasoning, similarity or relevance may not
be the most suitable criteria for identifying effective ICL
examples for improving overall performance.
Complexity-based MM-ICL. Our empirical analysis re-
veals that not all questions are equally challenging, in terms
of the complexity of multimodal fusion. Take Figure 1 as
an example: when comparing Titanic (1997) to Spider Man
(2018), the latter presents a more complex case. It requires



Figure 3. Our proposed SegEval evaluator to measure recurrent text generation quality with GPT-4 under customized marking criteria.
Noticeably, GPT-4 is agnostic to the source of each assistant output (i.e., which Seg is GT or PD), and it would measure Seg quality taking
oracle contexts into consideration. Take the response shown above as example, its corresponding re-scaled r is 2.25. Zoom in for details.

the inference that “Peter and Spider Man are the same char-
acter”, a deduction drawn from context AD and subtitles,
alongside describing his actions from visual frames, en-
riched by contextual understanding from the context AD.

This observation led us to hypothesize that complexity
could be a more suitable metric for identifying effective
ICL examples for tasks involving intricate multimodal fu-
sion. To this end, we propose to query LLM to articulate
the chain-of-thoughts (CoTs) as reasoning steps, denoted as
R, that assist in deriving the answer A from the question Q.
This process evolves our demonstration format from simple
(Q,A) pairs to more comprehensive (Q,R,A) tuples.

Instead of the conventional random sampling from the
entire pool P , we propose selecting the most straight-
forward examples, quantified by the shortest number of
reasoning steps. These are compiled into a simpler subset
pool Psimple, from which we conduct our demonstration
sampling. This method ensures the inclusion of more
intuitive and concise examples in our MM-ICL process.
We present detailed ablation study in §5.4, validating
that complexity serves as a robust measure for selecting
effective ICL examples for improving AD generation.

4. Segment-based GPT-4 Evaluator
The lack of standard AD annotation guidelines, varying

cultural background and preferences of human annotators
imply that AD is an inherently subjective recurrent text gen-
eration process, leading to notable inter-annotator disagree-
ments [21] and challenges in evaluation using traditional
reference-based captioning metrics. To this end, inspired
by [32, 35], we propose a segment-based GPT-4 evaluator
SegEval to measure the recurrent AD generation, in terms
of multi-domain qualities.

Suppose L ADs form one segment Seg. For each Seg,
the evaluator takes into consideration an oracle context win-
dow Ctx of length W , to measure its multi-aspect scores.
Specifically, we gather W - 1 adjacent segments to form

Ctx, which consists of W−1
2

past and W−1
2

future segments
surrounding the targeted Seg. Given a pair of predicted
(PD) and ground-truth (GT) AD segments, SegEval would
treat them as outputs of two separate AD generation sys-
tems, and query GPT-4 to reason and mark their raw marks
independently. The final score is calculated as the ratio r of
these raw marks between predicted and human-annotated
AD, via post-processing. If the re-scaled r is higher than
1.0, it indicates that GPT-4 might favour the predicted AD
over human annotations under the specific aspect. Besides,
this rescaling operation makes it comparable among differ-
ent approaches, sharing human annotations as the marking
standard. Noticeably, although GPT-4 is unaware of the seg-
ment source that which Seg is the GT or PD, we always
form Ctx from GT annotations to set the oracle for investi-
gating contextual influences.

Overall, as shown in Figure 3, SegEval can measure
context-irrelevant, short-context and long-context scores by
flexibly changing the value of W . For example, it could
measure text-level qualities such as originality and consis-
tency (when W = 1), while it could also mark sequence-
level qualities such as coherence, diversity and specificity
(when W > 1). The details of each marking criteria are
provided in supplementary (§D).

5. Experiments
5.1. Evaluation Setup

Datasets. We conduct experiments on the AD genera-
tion benchmark established in AutoAD [22], where MAD-
v2-Named and MAD-eval-Named are released as training
and testing splits, respectively. MAD-v2-Named consists
of 334,296 ADs and 628,613 subtitles from 488 movies,
while MAD-eval-Named is compromised of 6,520 ADs
and 10,602 subtitles from 10 movies.
Metrics. Following AutoAD [22], we report three tradi-
tional captioning metrics to measure the quality of ADs gen-



erated versus human-annotated ones, including ROUGE-
L [29] (R-L), CIDEr [59] (C) and SPICE [9] (S). Be-
sides, we follow AutoAD-II to benchmark the text sequence
generation over their recall-based metric ‘Recall@k within
Neighbours’ (R@k/N), where the text similarity is mea-
sured by BertScore [67]. We also report Bleu-1 [46] and
METEOR [11] for ablation studies. To reduce experimen-
tal variability, each experiment of MM-Narrator is repeated
three times in Tables 1 to 6, as well as Figure 5, with mean
(and std) reported.

5.2. Comparison with State-of-the-Art Approaches

Fine-tuning-based SOTAs. We first compare our training-
free framework against the fine-tuning-based SOTAs, in-
cluding ClipCap [41], ClipDec [42] and AutoAD-I [22]. As
shown in Table 1, our training-free approach outperforms
its fine-tuning-based counterparts [22, 41, 42], in terms of
ROUGE-L, SPICE and R@k/N, especially the AutoAD-
I [22] (R-L 12.1 vs 11.9; S 4.5 vs 4.4; R@k/N 48.0 vs
42.1) which is proposed to conduct partial data pretraining
over an extra large-scale text-only AV-AD dataset [2, 22]
(consisting of 3.3M ADs from over 7k movies) to address
the lack of paired training data for AD generation. Unlike
[21,22] who report to struggle with benefiting from charac-
ter dialogues, our MM-Narrator could better integrate mul-
timodal information and effectively identify characters from
appropriate subtitle usage (shown as model D in §5.3).
Training-free LLM/LMM Baselines. We next com-
pare our MM-Narrator with LLM and LMM baselines: (a)
VLog [6] and (b) VideoChat-Text [27] are two LLM-based
methods for multimodal video understanding. They convert
multimodal perceptions into natural languages via several
pretrained models [26, 49, 62, 64], and then utilizes a LLM
to generate texts based on task-specific prompts. To make a
fair comparison, we make them query GPT-4 with the same
AD generation prompt as we use in MM-Narrator. (c) MM-
Vid [30] is a LMM system which generates AD through
incorporating external knowledge with clip-level video de-
scription generated by GPT-4V [45, 66].

As shown in Table 2, our MM-Narrator (w/o MM-ICL)
would outperform VLog and VideoChat, which is mainly
attributed to the proposed short-term memory queue and
long-term visual memory to effectively leverage relevant
contextual information recalled from past ADs. In addi-
tion, while MM-Narrator is based on GPT-4 (text-only),
it also surpasses the GPT-4V(ision) based MM-Vid sys-
tem in terms of R-L and SPICE. The results suggest that
a memory-augmented LLM can be comparably valuable to
the perception-enhanced ones. Furthermore, with our pro-
posed MM-ICL, MM-Narrator outperforms these training-
free LLM/LMM counterparts by a large margin. Finally,
the bottom two rows of Table 2 further validate the effec-
tiveness of the proposed MM-ICL design.

Method Training-Free R-L (↑) C (↑) S (↑) R@5/16 (↑)

ClipCap [41] ✗ 8.5 4.4 1.1 36.5
ClipDec [42] ✗ 8.2 6.7 1.4 -
AutoAD-I [22] ✗ 11.9 14.3 4.4 42.1

MM-Narrator ✓ 12.1 11.6 4.5 48.0

Table 1. Comparisons with fine-tuning-based state-of-the-art
methods on MAD-eval-Named benchmark. Note: the random
guess will result in a R@5/16 of 31.3%.

Method LLM/LMM R-L (↑) C (↑) S (↑) R@5/16 (↑)

VLog [6] GPT-4 7.5 1.3 2.1 42.3
VideoChat [27] GPT-4 7.9 2.4 1.8 42.5
MM-Vid [30] GPT-4V 9.8 6.1 3.8 46.1

MM-Narrator
w/o MM-ICL GPT-4 10.3 4.9 3.8 47.1
w/ MM-ICL GPT-4 12.1 11.6 4.5 48.0

Table 2. Comparisons with training-free LLM/LMM baselines on
MAD-eval-Named benchmark.

Method Training-Free R-L (↑) C (↑) S (↑) R@5/16 (↑)

AutoAD-II † [21] ✗ 13.4 19.5 - 50.8
MM-Narrator † ✓ 13.4 13.9 5.2 49.0

Table 3. Evaluation on MAD-eval-Named benchmark, with an
external character bank annotated and utilized for improved char-
acter recognition (denoted as †).

Utilizing External Character Bank. Previously, all dis-
cussed methods share the same and only knowledge source
to assist in character recognition. More specifically, they,
like us humans, mostly identify characters and infer their
names through hearing (i.e., auditory cues) alone when
watching movies. Given this single source of gaining char-
acter information, our MM-Narrator would convey contex-
tual information via retrieving visual and temporal memo-
ries. However, these methods suffer from an unavoidable
limitation: The character identities would unfortunately re-
main mystery until their names are being first-time called in
dialogues.

To alleviate that, following AutoAD-II [21] we also in-
vestigate how our method could benefit from incorporating
an external character bank. To construct this character bank,
[21] exploits actor portrait images (from an external movie
database) to retrieve a few most similar frames for each
main character in each movie. Unlike [21] who trains an
auxiliary character recognizer from these retrieved frames,
we maintain our training-free designs by simply concate-
nating these frames into short video clips to introduce each
character (with ADs as their names). Next, we prepend
these video clips to the long-form videos, such that they
could work compatibly with our register-and-recall mecha-
nism. As shown in Table 3, our MM-Narrator (w/ ExtChar-
Bank) could further boost its performance and generate out-
comes comparable to the fine-tuning-based AutoAD-II.
Qualitative Results. Qualitative comparisons over MAD-



Figure 4. Qualitative comparisons between ClipCap, MM-Vid, AutoAD-II, and our MM-Narrator, where the latter two approaches are
equipped with the external character bank. The movies are from (a) Signs (2002), (b) Ides of March (2011), (c) Charlie St. Cloud (2010),
and (d) Les Misérables (2012). Zoom in for details.

eval dataset are shown as Figure 4, while the qualita-
tive demonstrations of applying our MM-Narrator on other
long-form videos (external to the MAD-eval dataset) are
shown in Figure 1. Additional qualitative results are in-
cluded in supplementary (Figure 10 and 11).

5.3. Building MM-Narrator From Image Captioner

As shown in Figure 5, we quantitatively demonstrate
how our training-free MM-Narrator are developed step by
step. Starting from (A) an image captioner, we elaborate
how multimodal perception benefits MM-Narrator to form
an intricate multimodal understanding over video content.
Specifically, it includes adding (B) multiple frames, (C)
subtitles, and (D) a task-specific hint1. Noticeably, simply
adding the dialogues (C) might not result in an immediate
performance gain. However, with prompt engineering in
(D), MM-Narrator pays more attention to effectively lever-
age multimodal clues for character-centric AD generation.

Next, we illustrate how we transform MM-Narrator into
recurrent AD narrator to produce story-coherent AD, with
incorporation of past memories and complexity-based MM-
ICL. Specifically, MM-Narrator maintains (E) a short-term
memory queue, learns from (F) multimodal demonstra-
tions via MM-ICL, and retrieves (G) long-term visual mem-
ory for character re-identification, which could be further
boosted with (H) an external character bank.

5.4. Ablations on Multimodal In-Context Learning

We investigated three groups of MM-ICL proposed to
augment the baseline. Specifically, we built random R1
and similarity-based S1, by adapting classic ICL tech-
niques [13, 33] from conventional NLP tasks into multi-

1“Hint: try to infer character names from subtitles for AD generation.”

Figure 5. Ablations on each component for MM-Narrator.

Model Pool Size Demo. CoT R-L (↑) C (↑) B-1 (↑)Format
Baseline w/o MM-ICL
B1 - - ✗ 11.8±0.1 8.6±0.1 9.7±0.2
Random MM-ICL
R1 100% (Q,A) ✗ 13.2±0.1 12.9±0.2 12.2±0.1
R2 100% (Q,R,A) ✓ 13.4±0.1 13.4±0.2 12.7±0.1
R3 10% random (Q,A) ✗ 13.3±0.1 13.0±0.1 12.3±0.0
R4 10% random (Q,R,A) ✓ 13.3±0.1 13.4±0.1 12.6±0.0
Similarity-based MM-ICL
S1 100% (Q,A) ✗ 13.5±0.0 13.1±0.0 12.6±0.1
Complexity-based MM-ICL
C1 10% shortest (Q,A) ✗ 13.2±0.1 13.3±0.3 12.3±0.1
C2 10% shortest (Q,R,A) ✓ 13.4±0.0 13.9±0.1 12.8±0.0
C3 10% longest (Q,R,A) ✓ 13.3±0.1 12.7±0.2 12.4±0.1

Table 4. Our different MM-ICL designs for MM-Narrator †. The
baseline (B1) and

each representative MM-ICL implementation (R1, S1 and C2) are
highlighted.

modal AD generation. Next, we presented our complexity-
based design as C2.



Method LLM/LMM

Text-level Quality Sequence-level Quality
Context-irrelevant Scores Short-context Scores Long-context Scores
Orig. Cons. Cohe. Dive. Spec. Cohe. Dive. Spec.

±0.02 ±0.02 ±0.01 ±0.06 ±0.04 ±0.01 ±0.01 ±0.03

GT - 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
ClipCap [41] GPT-2 0.43 0.42 0.26 0.35 0.35 0.26 0.42 0.33
VLog [6] GPT-4 1.03 0.88 0.34 0.55 0.52 0.32 0.57 0.43
MM-Vid [30] GPT-4V 0.85 0.78 0.51 0.81 0.66 0.53 0.84 0.62
MM-Narrator GPT-4 1.05±0.10 1.03±0.05 0.52±0.06 0.70±0.06 0.66±0.04 0.57±0.05 0.70±0.02 0.61±0.05

MM-Narrator GPT-4V 1.49±0.10 1.45±0.05 0.94±0.07 1.01±0.04 1.13±0.08 0.87±0.04 1.05±0.04 1.14±0.05

MM-Narrator † GPT-4 0.95±0.02 1.06±0.01 0.62±0.04 0.75±0.01 0.76±0.01 0.62±0.04 0.80±0.03 0.71±0.03

MM-Narrator † GPT-4V 1.45±0.14 1.46±0.04 0.98±0.03 1.06±0.04 1.24±0.09 0.94±0.02 1.09±0.05 1.12±0.03

Table 5. Evaluating AD generation with SegEval on MAD-eval-Named benchmark, with segment size L set to 5. The context window
sizes W are set as 1 / 3 / 11 to compute context-irrelevant / short-context / long-context scores, respectively. Orig., Cons., Cohe., Dive.,
and Spec. stand for originality, consistency, coherence, diversity, and specificity, respectively. The scoring variances of these GPT-4
evaluators are denoted below for references, which are estimated by three repeated evaluations over the same inference outputs. These re-
scaled scores measure the corresponding AD prediction (PD) qualities of each specific method, compared to the shared marking standards
set by ground-truth (GT) ADs. For example, given a pair of PD and GT segments, without revealing to the evaluator which segment is GT
or PD, if it reasons and marks the raw qualities (R.Q.) as 8 and 5 for PD and GT segments, respectively, we derive the re-scaled score r as
R.Q.PD
R.Q.GT

=
8

5
= 1.6. † indicates our incorporation with ExtCharBank.

Method R-L (↑) C (↑) M (↑) B-1 (↑)

MM-Narrator
+ GPT-4 12.1±0.4 11.6±0.4 5.7±0.2 11.8±0.3
+ GPT-4V 11.8±0.1 7.0±0.2 6.5±0.1 9.3±0.1

MM-Narrator †
+ GPT-4 13.4±0.0 13.9±0.1 6.7±0.0 12.8±0.0
+ GPT-4V 12.8±0.0 9.8±0.2 7.1±0.0 10.9±0.0

Table 6. Comparisons over classic reference-based captioning
scores, when incorporating our MM-Narrator with GPT-4V.

The results as shown in Table 4, verify our hypothesis
that complexity serves as an appropriate measure for select-
ing effective ICL demonstrations for improving AD gener-
ation. It also indicates that our proposed complexity-based
design (C2) is more preferable than classic ones (R1, S1)
for AD generation, especially the CIDEr score. In sup-
plementary (§C), we further discuss three sub-questions to
elaborate an in-depth analysis, including 1) Does CoT help?
2) Are more intuitive examples helpful for AD Generation?
and 3) Does complexity-based MM-ICL work effectively?

5.5. Evaluating AD Generation with GPT-4

In Table 6, we observe a few performance drop on clas-
sic reference-based captioning scores when incorporating
MM-Narrator with GPT-4V [45]. As shown in Figure 4,
the decrease in performance can be primarily attributed to
the more detailed and much richer ADs generated by our
method, which diverge from the typically shorter human-
annotated ADs in MAD-eval-Named. This suggests that
taking human annotated AD as oracles to measure AD-level
captioning scores might be unsuitable for advanced LMM
approaches, which further motivates our proposal of evalu-
ating recurrent text generation with GPT-4.

Adjusting W , our proposed SegEval could flexibly
measure both text-level and sequence-level qualities. As

shown in Table 5, the performance ranking order observed
in SegEval aligns with our other experimental results, val-
idating the reliability of SegEval as an evaluation tool, ex-
cept for GPT-4V based MM-Vid where ours falls short on
diversity. Furthermore, when employing GPT-4V as our vi-
sion expert, MM-Narrator not only outperforms others by a
large margin, but also closely mirrors the quality of human
annotated ADs in multiple aspects, gaining more favor from
the source-agnostic GPT-4 evaluator.

Compared to classic reference-based captioning scores,
SegEval could better reflect the recurrent text generation
qualities with GPT-4. One human validation on SegEval

is shown in Figure 3, and more examples can be found in
supplementary (Figure 9). Moreover, SegEval could be
easily extended to support more comprehensive evaluation
perspectives by querying it with extra customized marking
criteria.

6. Conclusion
MM-Narrator represents a significant leap in automatic

audio description (AD) generation for long-form videos,
leveraging the power of GPT-4 and innovative multimodal
in-context learning (MM-ICL). This recurrent AD narra-
tor excels in generating story-coherent and character-centric
AD by combining immediate textual context with long-term
visual memory. Its training-free design, coupled with our
proposed complexity-based MM-ICL demonstration selec-
tion strategy, outperforms both existing fine-tuning-based
and LLM-based approaches in most scenarios, as measured
by traditional captioning metrics. Furthermore, we intro-
duce a GPT-4 empowered evaluator for a more comprehen-
sive measurement of recurrent text generation qualities. Its
results suggest that MM-Narrator generates AD comparable
to human annotations across several considered aspects.
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Appendix

In this supplementary, we present more details and dis-
cussions of AD generation with MM-Narrator (§A), our
proposed complexity-based MM-ICL (§B), ablation studies
of MM-ICL (§C) and AD evaluation with SegEval (§D).
Next, we elaborate our implementation details (§E) and dis-
cuss the future work on both AD generation and evaluation
(§F).

A. AD Generation

MM-Narrator builds prompts to query GPT-4 for recur-
rent AD generation, including the following elements: task-
specific introduction Itask and hint Htask, main query qmain,
as well as a set of few-shot multimodal demonstrations DICL

to conduct in-context learning. With a breakdown shown in
Figure 7, we present the details as follows.
Querying with multimodal clues. Both the main query
qmain and the demonstration queries in DICL are format-
ted with the same query builder, which outputs AD query
from multiple text-formed multimodal clues. These mul-
timodal clues include visual captions (xcap

i ) with success-
fully re-identified characters, recent context ADs (Mshort)
and character dialogues (xsub

t∈Tsub
).

Prompting with MM-ICL. Each MM-ICL demonstra-
tion within DICL, is composed of a pair (Q,A) or a tuple
(Q,R,A) when chain-of-thought (CoT) is adopted to gen-
erate the multimodal multi-step reasoning R that derives
answer A from question Q.
More qualitative results. Apart from Figure 1 and 4
in main paper, we show additional qualitative demonstra-
tions of MM-Narrator on both MAD-eval-Named bench-
mark and other long-form videos (external to the MAD-eval
dataset) as Figure 10 and Figure 11, respectively, in this sup-
plementary.

B. Details of Complexity-based MM-ICL

Combining CoT with complexity-based ranking, our
proposed complexity-based MM-ICL performs more favor-
ably than classic ICL solutions. We reveal their details as
follows.
Reasoning with CoT. We first employ GPT-4 to articulate
the chain-of-thoughts (CoTs) as reasoning steps, denoted as
R, that assist in deriving the answer A from the question Q.
Practically, we found a CoT-specific constraint2 helpful to
derive reliable CoTs, ensuring a closed-loop reasoning to be
inferred. Without this constraint, LLM might unexpectedly
generate R followed by its own AD prediction, which are
different from the human annotated A.

2CoT-specific constraint: “lets fill-in the REASONING process which
derives the ANSWER from QUESTION.”

Quantifying on atomic steps. Practically, we observe
that raw steps decided by LLM itself, might not be a con-
siderably consistent measurement among various examples.
Take two demonstrations shown in Figure 8 as example:
Steps 3 to 7 in left example, conduct reasoning over per-
frame captions individually, which are equivalent to step 2
in right example, including several sub-steps in analysing
the per-frame captions. To this end, following [19], we split
R into atomic steps by newline char “\n”, and propose us-
ing the number of atomic steps Natomic as our measurement
of reasoning complexity.

Figure 6. Distributions of multimodal MAD-v2-Named demon-
strations over reasoning complexity, quantified by Natomic.

Ranking by complexity. We propose to select the most
intuitive examples to perform few-shot MM-ICL for im-
proving AD generation. Here, we show the distributions
of multimodal demonstrations over the complexity in Fig-
ure 6. Specifically, the 10% shortest examples lead to a sim-
ple demonstration pool Psimple with its maximum Natomic

as 5, while the 10% longest ones result in another pool Phard

whose minimum Natomic equals to 12.

C. More Ablations on MM-ICL
Table 4 in the main manuscript implies that complex-

ity is a suitable criterion for selecting efficient ICL demon-
strations to enhance AD generation. Here, we further dis-
cuss three sub-questions to elaborate a few in-depth ablation
studies, as following:
Does CoT help? We propose to adopt CoT technique
to obtain the intermediate reasoning steps R that help de-
rive answer A from question Q. This automatic process ex-
tends demonstration format from (Q,A) pairs to (Q,R,A)
tuples. As its consistent gains could be observed multi-
ple times (R1 vs R2; R3 vs R4; C1 vs C2), adding multi-
modal multi-step reasoning R during MM-ICL could help
MM-Narrator improve its multimodal reasoning capability



to better incorporate multimodal inputs. Qualitative demon-
strations of R are shown as Figure 8 in this supplementary.
Does complexity-based ranking help? We observed that
conducting MM-ICL with the most intuitive examples ben-
efits the overall performance (R4 vs C2), however, switch-
ing with the hardest ones which own the longest reasoning
steps, MM-ICL actually leads to a decline in performance
(R4 vs C3). These results indicate that more straightfor-
ward examples, quantified by the shortest number of rea-
soning steps, compile to a simpler yet more powerful subset
MM-ICL demonstration pool for effective AD generation.
Does complexity-based MM-ICL work effectively?
Combining CoT with complexity-based ranking, our pro-
posed complexity-based MM-ICL (C2) performs more fa-
vorably than the random and similarity-based sampling ap-
proaches (R1 [13] and S1 [33]), which are classic solutions
in choosing few-shot ICL examples. Besides, ours is easy-
to-implement and explainable-to-human, avoiding the com-
putation overhead of retrieval-based selection.

D. AD Evaluation with GPT-4

Suppose a few ADs form one segment Seg. For each
Seg, our proposed SegEval evaluator takes into considera-
tion an oracle context window Ctx of length W , to measure
its AD quality with GPT-4. The details of SegEval prompt
are shown as Figure 9. We elaborate each individual mark-
ing criteria as follows:

• originality: Evaluates if the Seg is novel and non-
repetitive, to enrich the watching experience of the vi-
sually impaired.

• consistency: Checks if the generated Seg maintains a
consistent tone or content throughout.

• coherence: Determines whether Seg logically con-
nects to the given Ctx. A coherent text flows smoothly
and deepen the movie understanding for the visually
impaired.

• diversity: Focuses on the variety of Seg generated. A
good model should produce varied outputs rather than
repetitive or highly similar ones against the given Ctx.

• specificity: Measures the level of detail in the gener-
ated Seg, assessing if it is sufficiently detailed and/or
focused for the Ctx.

Noticeably, the first two marking aspects focus on text-level
AD quality, which are context-free (W = 0) evaluation met-
rics, while the rest three metrics measure sequence-level
AD generation, taking oracle context into consideration.

E. Implementation Details

Multimodal Experts. To obtain framewise image cap-
tion and people detection, we utilize vision experts pub-
licly available via the Azure Cognitive Services APIs3. For
speech recognition, we choose WhisperX [10] as our au-
dio expert. To register and recall long-term visual memory
for character re-identification purpose, we adopt CLIP-ViT-
L14 [48] as our visual feature extractor, and query GPT-4
as our Person-NER tool with the following prefix: “Extract
the people names in the following text as a string splitted by
‘∣’ (return ‘none’ if none of names are recognized): ”.

Building MM-ICL Pool. We build the MM-ICL demon-
strations for each sample in MAD-v2-Named split [22]. As
the raw frames are not publicly available, we derive per-
frame captions by inferring ClipCap [41] on the released
CLIP-ViT features. Differing from the main query qmain,
whose recent context ADs in Mshort are recurrently gener-
ated by MM-Narrator, the queries in MM-ICL demonstra-
tions DICL are instead built with human annotations as their
recent context ADs. Additionally, we omit long-term visual
memory retrievals when constructing MM-ICL demonstra-
tions.

GPT-4 Error Handler. GPT-4 might inevitably return
errors when the content filtering policies4 are occasionally
triggered in Azure OpenAI Service. Such cases account for
a very small proportion (less than 0.1%), thus they would
not largely affect the overall performance. To address them,
we utilize ClipCap [41] as the error handler to output video
caption as AD. Specifically, we inference ClipCap on the
mean pooled feature among frames in each video clip.

Deployment on Long-form Videos. We utilize
PySceneDetect [5] for scene detection, and based on that,
we cut long-form videos into video clips for recurrent AD
generation with MM-Narrator. We utilize Google Text-to-
Speech (gTTS) [3] for voice-over audio creation, which nar-
rates AD for each video clip.

Hyper-parameter Settings. Following [22], the number
of frames N to be sampled per video clip is set to 8, while
we utilize subtitles within a time window Tsub set to 0.25
minutes. Our short-term memory queue is maintained to
contain K most recently predicted ADs with timestamps,
where K = 7. The number of demonstrations C equals to
5, which are sampled for conducting MM-ICL. The API
versions of GPT-4 and GPT-4V used in our experiments are
‘gpt4-2023-03-15’ and ‘gpt4v-2023-08-01’, respectively.

3https://azure.microsoft.com/en-us/products/cognitive-services/vision-
services

4https://learn.microsoft.com/en-us/azure/ai-
services/openai/concepts/content-filter

https://azure.microsoft.com/en-us/products/cognitive-services/vision-services
https://azure.microsoft.com/en-us/products/cognitive-services/vision-services
https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/content-filter
https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/content-filter


F. Future Works
AD Generation. In future developments in Audio De-
scription (AD), a critical enhancement will be the integra-
tion of advanced audio-visual speaker and character identi-
fication, coupled with strategic timing for AD delivery. This
direction involves not only recognizing who is speaking or
present in a scene but also determining the most opportune
moments to provide descriptions without interrupting crit-
ical dialogue or action. Additionally, the establishment of
a much more comprehensive and reliable external character
bank, facilitating retrieval-augmented generation, will fur-
ther refine AD content, ensuring it is both contextually rele-
vant and timely. These advances are poised to transform AD
into a more coherent, immersive experience, significantly
improving accessibility for visually impaired audiences.
AD Evaluation. In future work for AD evaluation, a cru-
cial focus should be on enhancing the measurement of fac-
tuality, an aspect not adequately addressed by current eval-
uation criteria like SegEval. Given the limitation of tradi-
tional reference-based scores in precisely assessing the fac-
tual accuracy of AD content, employing AI models such
as GPT-4V emerges as a promising solution. GPT-4V’s
advanced capabilities in understanding and contextualiz-
ing multimedia content could offer a more nuanced and
accurate evaluation of AD factuality. This shift towards
AI-driven, factuality-focused evaluation methods would not
only provide a more comprehensive assessment of AD qual-
ity but also ensure that the generated descriptions are reli-
ably accurate, ultimately benefiting visually impaired indi-
viduals with a more authentic storytelling experience.

Acknowledgment
We are deeply grateful to OpenAI for providing ac-

cess to their exceptional tool [44, 45]. We also extend
heartfelt thanks to our Microsoft colleagues for their in-
sights, with special acknowledgment to Faisal Ahmed,
Ehsan Azarnasab, and Lin Liang for their constructive feed-
back.



Figure 7. A breakdown of the AD generation prompt constructed by MM-Narrator, including an (A) overview with ICL-specific instruc-
tions marked in green, (B) task-specific introduction Itask and (C) hint Htask, a few multimodal ICL (MM-ICL) demonstrations DICL

with an example shown as (D), and (E) the main query qmain to be responded by GPT-4, with long-term visual memory marked in gray.
Eventually, we show the corresponding (F) quantitative and qualitative analysis of the AD prediction via MM-Narrator against the human
AD annotation. Zoom in for details.



Figure 8. Reasoning with CoT. (A) An overview of prompting LLM to articulate CoTs as multimodal multi-step reasoning R that derives
the answer A from question Q, with (B) two examples shown below. Zoom in for details.



Figure 9. AD evaluation with SegEval. (A) An overview of prompting GPT-4 to evaluate AD generation quality, with (B) one diversity
and (C) one originality examples shown below. Zoom in for details.



Figure 10. More qualitative comparisons on MAD-eval-Named benchmark. For example, in The ides of March (2011), our method
generates AD by conditioning on current video clip and the contextual information from timestamp 00:00:00 to 01:05:28. Zoom in for
details.

Figure 11. More qualitative demonstrations of MM-Narrator on other long-form videos. For example, in Inception (2010), our method
generates AD by conditioning on current video clip and contextual information from timestamp 00:00:00 to 00:31:52. Zoom in for details.
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